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a b s t r a c t

We investigate the ability of simple diagnostics based on Lagrangian descriptor (LD) computations
of initially nearby orbits to detect chaos in conservative dynamical systems with phase space
dimensionality higher than two. In particular, we consider the recently introduced methods of the
difference and the ratio of the LDs of neighboring orbits, as well as a quantity related to the finite-
difference second spatial derivative of the LDs, and use them to determine the chaotic or regular nature
of ensembles of orbits of a prototypical area-preserving map model, the 4-dimensional symplectic
standard map. We compare the characterization obtained by these LDs-based diagnostics against that
achieved by the Smaller Alignment Index method of chaos detection, by recording the percentage
agreement PA between the two classifications. We also study the influence of the final number of
orbit iterations T , the order n of the indices, as well as the distance σ of neighboring orbits on the
performance of these methods, and find appropriate T , n and σ values which allow the efficient use
of the three indices as short time and computationally cheap chaos diagnostics achieving PA ≳ 90%.
Our findings clearly indicate the capability of LDs to efficiently identify chaos in systems whose phase
space is difficult to visualize, due to its high dimensionality, without knowing the variational equations
(tangent map) of continuous (discrete) time systems needed by traditional chaos indicators.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Determining the nature of individual orbits as either chaotic
r regular, as well as the dynamics of ensembles of orbits, is
undamental for understanding the behavior of continuous and
iscrete time dynamical systems. To this end, a variety of dif-
erent techniques and indicators, to either visualize the system’s
hase space or to detect chaotic orbits, have been developed over
he course of time.

The asymptotic measures introduced by Lyapunov [1] to char-
cterize the growth or shrinking of small phase space pertur-
ations to orbits (often referred to as deviation vectors) have
een widely accepted as a standard tool for this purpose. These
uantities are commonly named Lyapunov exponents (LEs). Fol-
owing the formulation of the multiplicative ergodic theorem by
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ttps://doi.org/10.1016/j.physd.2023.133833
167-2789/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
Oseledec [2], a theoretical basis for the numerical computation
of LEs was presented [3,4]. The estimation of the maximum LE
(mLE) through the numerical computation of the finite-time mLE
(ftmLE), is nowadays one of the most commonly used chaos
detection methods as the positivity of the mLE of bounded orbits,
which do not escape to infinity, indicates chaotic behavior (see for
example [5] and references therein).

The slow convergence of the ftmLE to its limiting value has
necessitated the search for alternative, more efficient indica-
tors. Among these indicators are the so-called fast Lyapunov
Indicator (FLI) [6] and its variants [7], the Mean Exponential
Growth of Nearby Orbits (MEGNO) [8], the Smaller Alignment In-
dex (SALI) [9] and its extension, the Generalized Alignment Index
(GALI) [10]. These indicators have certain advantages over the
estimation of the mLE as, in general, they manage to characterize
orbits as regular or chaotic faster and with less computational
effort, although they also rely on the time evolution of at least

one deviation vector.
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One of the most successful methods among this set of new
indicators is the SALI, which has been efficiently used to study of
chaoticity of several different systems, such as accelerator mod-
els [11,12], predator–prey population maps [13], Bose–Einstein
condensates [14], galactic potentials [15,16], as well as nuclear
physics models [17]. The interested reader is referred to the
review [18] for more details on this method and its applications.

A recently developed visualization technique for the identifi-
cation of phase space structures in continuous time dynamical
systems and discrete time iterative maps is the method of La-
grangian descriptors (LDs) [19–21]. The computation of LDs is
based on the accumulation of some positive scalar value along
the path of individual orbits to produce a scalar field on a grid
of initial conditions. From the gradient of this field the manifolds
in both regular and chaotic regions can be identified as singular
features, following the theoretical discussions in [22,23] for the
discrete and continuous time settings respectively. Initially ap-
plied to the study of ocean currents [19,20], this method has since
been utilized to study the dynamics of systems from a variety
of different fields such as chemical transition state theory [24,
25], molecular systems [26,27], cardiovascular flows [28], and
stochastic dynamical systems [29].

In [23] the identification of regular tori using LDs was carried
out, with an application to geophysical flows given in [30]. The
characterization of regular motion by LDs was further considered
in [31], while in a recent work [32] an indicator based on the
estimation of the second derivative of the LDs field was used
to discriminate between regular and chaotic motion in discrete
and continuous systems. These works paved the way for LDs
to be used for not only a visual inspection of the phase space,
but also for determining the chaotic nature of orbits. This was
done in [33], where it was shown that indicators derived from
LDs of nearby orbits can be used to characterize the chaoticity
of ensembles of orbits with ≳90% accuracy (in comparison with
the characterizations obtained by the SALI method) for both the
Hénon–Heiles [34] system and the two-dimensional (2D) stan-
dard map [35]. An advantage of LDs-based chaos diagnostics over
the more traditional above mentioned chaos indicators is that the
evolution of deviation vectors is not required, which reduces the
complexity of the performed computations and simultaneously
diminishes the required CPU time.

In [33] the introduced methods were applied to low-
dimensional systems having 2D phase spaces, which are easily
depicted. Here we extend that study by investigating in detail
the performance of these diagnostics in a higher-dimensional set-
ting, where the phase space’s visualization becomes challenging,
although methods like the ‘color and rotation’ [36,37] and the
‘phase space slices’ [38], as well as approaches based on LDs [39]
have been used for that purpose. In particular, we demonstrate
how these techniques can be used to identify orbits as regular or
chaotic within a certain accuracy, using as a test case a 4D map,
a higher-dimensional conservative dynamical system of discrete
time.

The rest of the paper is organized as follows. In Section 2 we
describe the numerical computation of the various chaos diag-
nostics used in this investigation. In Section 3, we implement our
techniques for studying the chaotic behavior of the 4D standard
map for different setups of the system. Finally in Section 4, we
discuss our findings and summarize our conclusions.

2. Numerical techniques

In order to study the performance and efficiency of the three
quantities based on the LDs values of neighboring orbits, which
were presented in [33], for systems of higher dimensionality we
consider here, as a test case of an area preserving map, the 4D
2

standard map [40] obtained by coupling two (identical in our
implementation) 2D standard maps

x′

1 = x1 + x′

2,

x′

2 = x2 +
K
2π

sin(2πx1) −
B
2π

sin
[
2π (x3 − x1)

]
,

x′

3 = x3 + x′

4,

x′

4 = x4 +
K
2π

sin(2πx3) −
B
2π

sin
[
2π (x1 − x3)

]
,

(mod 1) (1)

with K and B being real parameters, and z = (x′

1, x
′

2, x
′

3, x
′

4)
denoting the state vector of the map’s coordinates after a single
iteration. The parameter K defines the nonlinearity strength of
each one of the 2D coupled maps, while B determines the strength
of coupling between the two 2D maps. All coordinates are given
(mod 1), so that 0 ≤ xi < 1, i = 1, 2, 3, 4. We note that
the number T of map’s iterations will also be referred to as the
(discrete) time of the system.

Small perturbations of tested orbits are key in determining
the regular or chaotic nature of these orbits. Such a perturbation
defines the deviation vector w = (δx1, δx2, δx3, δx4), whose time
evolution is governed by the system’s tangent map given by

δx′

1 = δx1 + δx′

2,

δx′

2 =

{
K cos(2πx1) + B cos

[
2π (x3 − x1)

]}
δx1

+ δx2 − B cos
[
2π (x3 − x1)

]
δx3,

δx′

3 = δx3 + δx′

4,

δx′

4 = − B cos
[
2π (x1 − x3)

]
δx1

+

{
K cos(2πx3) + B cos

[
2π (x1 − x3)

]}
δx3 + δx4.

(2)

The mLE λ1 of an orbit is estimated through the computation
of the ftmLE

Λ(T ) =
1
T
ln

(
∥w(T )∥
∥w(0)∥

)
, (3)

as

λ1 = lim
T→∞

Λ(T ), (4)

with ∥ · ∥ denoting the usual Euclidean norm of a vector. For a
chaotic orbit, Λ eventually saturates to a positive value, whereas
in the case of regular orbits Λ decreases following the power
law [5]

Λ(T ) ∝ ln(T )/T . (5)

In contrast to the estimation of the mLE, the computation of
the SALI depends on the evolution of two, initially linearly inde-
pendent, deviation vectors w1 and w2. Then SALI(T ), which quan-
tifies the alignment of these two deviation vectors, is computed
as

SALI(T ) = min
{
∥ŵ1(T ) + ŵ2(T )∥, ∥ŵ1(T ) − ŵ2(T )∥

}
, (6)

ith

ˆ k(T ) =
wk(T )

∥wk(T )∥
, k = 1, 2, (7)

being a vector of unit norm. For chaotic orbits, the two deviation
vectors will eventually be aligned to the direction related to the
mLE and consequently the SALI will follow an exponential decay
to zero, with a rate depending on the values of the two largest LEs
λ1 ≥ λ2. On the other hand, for regular orbits in the phase space
f a 4D symplectic map the SALI remains positive and practically
onstant. Thus, in summary, the behavior of the SALI for orbits of
he 4D standard map (1) is

ALI(T ) ∝

{
constant for regular orbits
−(λ1−λ2)T

(8)

e for chaotic orbits.
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In our study, following [33], we exploit the ability of LDs to
capture the basic dynamical features of a system in order to
identify regular and chaotic motion. Let us first recall that the
‘‘p-norm’’ definition of the LD for a discrete map is given by

LD =

T−1∑
j=−T

N∑
i=1

⏐⏐⏐z(i)j+1 − z(i)j

⏐⏐⏐p , 0 < p ≤ 1, (9)

where i indexes the N elements of the state vector z [for map (1)
N = 4], and j counts the map’s iterations. Since the LD definition
(9) with p = 0.5 has been successfully implemented in various
studies (e.g., [41,42]) and has shown a remarkable ability in
identifying phase space structures, we will also set p = 0.5 for
our investigations. We emphasize that, although in the formal
definition (9) of the LD the map is integrated both in the past
(j starts at j = −T ) and in the future (j goes up to j = T −

1), for the purposes of our study the computation of the LDs
through only forward (or backward) iterations is sufficient. More
specifically, the presented results are solely obtained through
forward iterations.

Let us now discuss how we can identify the regular or chaotic
nature of an orbit with initial conditions (ICs) at point z in the
map’s phase space, based on the values of the LDs of this orbit and
of initially neighboring ones. The ICs of these neighboring orbits
can be seen as grid points of a mesh in several spatial dimensions.
In the case of the 4D map (1) we can consider neighboring orbits
to an IC in nD spaces with 1 ≤ n ≤ 4. For n = 1 we have two
neighboring points of z on a line (1D space), while for n = 2
the four nearest neighbors are located on a grid in a 2D subspace
of the 4D phase space. Thus, considering ICs of orbits on a finite
grid of an n(≥ 1)D subspace of the N(≥ n)D phase space of a
general ND symplectic map, any non-boundary grid point z in this
subspace has 2n nearest neighbors

y±

i = z ± σ (i)e(i), i = 1, 2, . . . , n, (10)

where e(i) is the ith unit vector of the usual basis in Rn, and σ (i)

is the distance between successive grid points in this direction.
If we respectively denote by LD(z) and LD

(
y±

i

)
the LDs of

orbits with ICs z and y±

i we can define the three diagnostics we
use in our study, following [33]. More specifically, the difference
Dn
L of LDs of neighboring orbits at z in an nD subspace is defined

as

Dn
L (z) =

1
2n

n∑
i=1

⏐⏐LD(z) − LD(y+

i )
⏐⏐ +

⏐⏐LD(z) − LD(y−

i )
⏐⏐

LD(z)
, (11)

while the ratio Rn
L is given by

Rn
L (z) =

⏐⏐⏐⏐⏐1 −
1
2n

n∑
i=1

LD(y+

i ) + LD(y−

i )
LD(z)

⏐⏐⏐⏐⏐ , (12)

with n also referred to as the order of the index. The last indi-
cator we use is related to the second spatial derivative of the
LD quantity. It was introduced in [32], briefly studied in [33],
and applied to celestial mechanics problems in [43], where it
was denoted by the rather cumbersome notation ∥∆LD∥. Here
we adopt the notation SnL to follow similar conventions to the
notations of Eqs. (11) and (12), as well as to clearly indicate the
dimensionality of the grid on which this diagnostic is computed,
and define the order n index as

SnL (z) =
1
n

n∑
i=1

⏐⏐⏐⏐ LD(y+

i ) − 2LD(z) + LD(y−

i )
(σ (i))2

⏐⏐⏐⏐ . (13)

e note that a difference between the definition of SnL and of the
∆LD∥ index used in [32,33,43] is that in (13) the factor 1/n is

introduced in order to compute a quantity ‘per dimension’ of the
3

space where the used ICs are, similar to what is done in (11) and
(12).

In order to demonstrate the basic behaviors of the two chaos
indicators [Λ (3), SALI (6)] and the three LDs-based diagnostics
[Dn

L (11), Rn
L (12), SnL (13)] we use in our study, we compute them

for two representative orbits, one regular with ICs x1 = 0.6,
x2 = 0.05, x3 = 0.54, x4 = 0.01 and one chaotic with ICs x1 = 0.2,
x2 = 0.2, x3 = 0.54, x4 = 0.01, for the 4D map (1) with K = 1.5
and B = 0.05. We note that for the three diagnostics based on
LDs computations we set n = 2, consider neighboring orbits on a
square grid in the (x1, x2) plane and compute the order 2 version
of the indices. The projection of the T = 2500 consequents of
the regular (blue points) and the chaotic orbit (orange points) on
the plane (x1, x2) are shown in Fig. 1(a). The points of the regular
orbit lie on a 4D stability island and create a regular, torus-like
structure. On the other hand, the consequents of the chaotic orbit
correspond to the scattered point in Fig. 1(a).

In Fig. 1(b)–(f) we respectively plot the time evolution of Λ,
SALI, D2

L , R
2
L and S2L for the considered regular (blue curves) and

chaotic orbit (orange curves). From the results of Fig. 1(b) we see
that the ftmLE Λ of the regular orbit eventually decreases to zero
proportionally to ln(T )/T (dashed line), while for the chaotic orbit
it saturates to a positive value as expected. On the other hand, the
SALI [Fig. 1(c)] approaches a positive value for the regular orbit
while it tends exponentially fast to zero for the chaotic one. We
note that all computations throughout this study are performed
using double-precision accuracy, thus we stop the time evolution
of the SALI when its values reach 10−16, i.e. the machine precision.
From Fig. 1(c) we see that the SALI of the chaotic orbit requires
only about T = 100 forwards iterations to reach the 10−16

threshold, characterizing the orbit beyond any doubt as chaotic
as its SALI is practically zero.

From the results presented in Fig. 1(d)–(f) we see that the
values of D2

L , R
2
L and S2L of the regular orbit remain well above

the ones obtained for the chaotic one (apart from some short
initial time interval T ≲ 200 for R2

L ). These clear differences
between the values of the D2

L , R
2
L and S2L diagnostics for regular

and chaotic orbits are observed generally and are not related to
the particular example orbits shown here. Thus, as was presented
in [33], and will be discussed in detail in Section 3, we can define
appropriate threshold values for each one of these three diagnos-
tics to efficiently discriminate between regular and chaotic orbits.
Nevertheless, it is important to note that this distinction needs
a minimum (rather small) number of iterations in order to be
clearly established, as we see in Fig. 1(e) and (f).

3. Numerical results

In this section we investigate in detail the ability of the Dn
L ,

Rn
L and SnL indices to distinguish between regular and chaotic

orbits in dynamical systems whose phase space dimension is
higher than two. As a representative case of such a system we
consider the prototypical 4D standard map (1). In our study we
investigate the influence of various factors on the ability of the
indicators to accurately characterize the chaoticity of orbits, like
the number of the performed map iterations, the extent of the
system’s chaoticity (i.e. the fraction of the chaotic orbits), and the
order of the indicators.

3.1. Dynamics on a 2D subspace

Extending the results presented in [33] for dynamical systems
with 2D phase spaces (in particular the Hénon–Heiles Hamilto-
nian [34] and the 2D standard map [35]) to the 4D map (1), we
first investigate the performance of the Dn

L , R
n
L and SnL indices in
a 2D subspace of the map for which we can easily obtain the
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Fig. 1. (a) The projection of a regular orbit (blue points) with ICs x1 = 0.6, x2 = 0.05, x3 = 0.54, x4 = 0.01, and a chaotic orbit (orange points) with ICs x1 = 0.2,
2 = 0.2, x3 = 0.54, x4 = 0.01, of the 4D map (1) with K = 1.5 and B = 0.05 on the (x1, x2) plane for T = 2500 forwards iterations of the map. Time evolution of
b) the Λ (3), (c) the SALI (6), (d) the D2

L (11), (e) the R2
L (12), and (f) the S2L (13) for the two orbits of (a). The D2

L , R
2
L and S2L are evaluated in the plane (x1, x2),

ith a grid spacing σ = 10−3 in each direction. The dashed line in (b) denotes the function ln(T )/T (5).
d
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irect visualization of regular and chaotic regions. In particular,
e consider a grid of 1000 × 1000 equally spaced ICs in the
ubspace (x1, x2) by setting x3 = 0.54 and x4 = 0.01, for K =

.5 and B = 0.05. This arrangement sets the distance between
mmediate neighboring ICs to σ = 10−3 in both directions on
he (x1, x2) plane. The LDs of all these orbits are computed for

= 103 forward iterations, and from the obtained results we
valuate indicators Dn

L , R
n
L and SnL for each IC. Since the considered

Cs lie on a 2D plane, we compute the order n = 2 versions of the
hree indicators. In Fig. 2(a)–(c), we present the resulting color
lots of these computations, where ICs on the (x1, x2) plane are
olored according to their log10 D2

L , log10 R
2
L and log10 S2L values

espectively. These plots display similar characteristics, providing
clear qualitative description of the structure of the phase space,
ith regular regions (islands of stability) corresponding to areas
f lower values and chaotic regions (chaotic sea) having higher
alues, in accordance to what was found in [33].
Although the color plots in Fig. 2(a)–(c) correctly capture the

verall dynamical features of the system, our main goal is to
se the three indices for obtaining a quantitative identification of
rbits as regular or chaotic. In order to obtain an estimation of the
haos extent in the studied 2D subspace of the map a threshold
alue needs to be established for each index, so that orbits can
e characterized as chaotic or regular if they respectively result
n index values above or below these thresholds. In Fig. 2(d)–(f)
e show the normalized distributions of the logarithms of these
hree quantities, all of which clearly show two peaks separated by
trough, which demarcates ICs leading to regular (low values)
nd chaotic motion (high values). Assuming that the minimum
etween the two peaks provides a good threshold value for
iscriminating between regular and chaotic orbits, the following
alues are obtained: log10 D2

L = −2.14, log10 R2
L = −2.85 and

og10 S2L = 6.70, respectively denoted by orange vertical, dashed
ines in Fig. 2(d)–(f).

As was also observed in [33] this approach does not nec-
ssarily lead to the correct characterization of all orbits, with
4

iscrepancies mainly appearing at the edges of stability islands.
e investigate if this trend also persists for the 4D standard
ap by comparing the characterization obtained from the D2

L , R
2
L

nd S2L diagnostics against the one made by the SALI indicator
or T = 103 iterations. Noting that the SALI of regular orbits
ill fluctuate around a positive, constant value, while for chaotic
rbits it will exponentially decrease to zero [see Eq. (8) and
ig. 1(c)], we consider a threshold value of log10 SALI = −8, so
hat an orbit is characterized as regular if log10 SALI ≥ −8, and
s chaotic if log10 SALI < −8. The percentage agreement PA of
he characterization of the orbits of Fig. 2 obtained by the three
Ds-based diagnostics, with respect to the one obtained by the
ALI is PA ≈ 94.4%, PA ≈ 92.5% and PA ≈ 94.5% for D2

L , R
2
L and S2L

espectively.
In Fig. 2(g)–(i) we respectively show for the D2

L , R
2
L and S2L

ndices the regions in the considered 2D subspace, where the
ndicators fail to correctly identify (with respect to the SALI cat-
gorization) the chaotic or regular nature of orbits. In particular,
lue points correspond to regular (according to SALI) orbits which
re falsely identified as chaotic by the D2

L , R
2
L and S2L indicators,

hile red points denote orbits classified as chaotic by SALI, which
re incorrectly identified as regular. Although the effectiveness
f the three indicators in distinguishing between regular and
haotic orbits is clearly captured by the very high agreement
ercentages (≳90%) with respect to the SALI classification, the
esults of Fig. 2(g)–(i) show that the large majority of incorrectly
haracterized orbits are mainly located at the edges of regular
slands where sticky chaotic orbits exist, in agreement to what
as reported in [33]. Our results show that the D2

L indicator
alsely characterizes as regular many sticky chaotic orbits at the
orders of stability islands [red points in Fig. 2(g)], while the
se of R2

L and S2L indices [Fig. 2(h), (i)] results in a more or less
imilar chart of wrongly identified orbits, which again are mainly
ocated at the boarders of stability islands. It is worth noting that
2 performs better than R2 as it falsely characterizes as regular
L L
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Fig. 2. Results obtained for orbits having their ICs on a 1000 × 1000 grid on the 2D subspace (x1, x2) with x3 = 0.54, x4 = 0.01, of the 4D map (1) for K = 1.5
and B = 0.05, after T = 103 forward iterations. The ICs are colored according to the orbits’ (a) log10 D2

L (11), (b) log10 R2
L (12), and (c) log10 S2L (13) values, using the

olor scales at the top of each panel. Normalized distributions of the (d) log10 D2
L , (e) log10 R2

L and (f) log10 S2L values of the orbits considered in (a)–(c). The values
og10 D2

L = −2.14, log10 R2
L = −2.85 and log10 S2L = 6.70 are respectively denoted in (d), (e) and (f) by an orange vertical, dashed line. The set of the considered ICs

hich are incorrectly characterized by, (g) the D2
L , (h) the R2

L , and (i) the S2L index, with blue points corresponding to regular orbits (according to the classification
btained by the SALI method for T = 103) which are falsely identified as chaotic, and red points denoting chaotic orbits which are incorrectly identified as regular.
t

t
t
b
t
R
c
T
o

l
i

ewer chaotic orbits in the large chaotic sea [i.e. there are fewer
ed points seen in the chaotic portion of Fig. 2(i) than in Fig. 2(h)].

.2. Effect of the number of iterations

A key factor when studying chaotic systems is the integration
ime, or the number of iterations in the case of the 4D map (1),
equired for indicators to correctly characterize orbits as regular
r chaotic. In general, too few iterations do not allow for the
xponential divergence of nearby orbits observed in the case of
haotic motion to lead to very large deviations, which in turn,
ould make apparent the chaotic nature of the orbits. This is true
ot only for indicators based on neighboring orbits’ LDs but for
ny chaos indicator. On the other hand, too many iterations will
ake the use of the considered indicators less efficient as they
ill increase the required computational time.
It is plausible to assume that the total number of iterations

equired for the characterization of orbits as chaotic or regular is
irectly related to the time it takes for the distributions of the D2

L ,
2
L and S2L indices to clearly reveal two distinct peaks. When the
wo peaks in the distribution are well formed, a threshold value
an be established between them allowing the discrimination
etween regular and chaotic orbits. Thus, in order to investigate
he effect of the number of iterations T on the behavior of the
Ds-based diagnostics we respectively plot in Fig. 3(a)–(c) the
ormalized distributions of the logarithms of the D2

L , R
2
L and S2L

alues for the ensemble of orbits considered in Fig. 2. These distri-
utions are computed for different numbers of forward iterations
of map (1), namely for T = 50 (blue curves), T = 100 (orange

urves), T = 250 (green curves), T = 1000 (red curves) and
5

T = 2500 (purple curves). From the results of these figures we
see that the shape of the distribution of the three diagnostics
does not significantly change, although in the case of S2L [Fig. 3(c)]
he distribution is shifted towards larger log10 S2L values as T
increases, and that the distance between the peaks remains ap-
proximately constant. In addition, for larger T the height of the
rough between the two well formed peaks decreases, allowing
he more accurate characterization of the orbits’ nature as it
ecomes easier to identify a well-placed threshold value between
he two peaks. Nevertheless, since we would like to use the D2

L ,
2
L and S2L indices as a fast (i.e. based on low iteration numbers)
haos indicator, we can say that, for the cases considered here,
= 1000 is sufficient to properly capture the overall dynamics

f the considered ensemble of orbits.
For completeness’ sake, we also present in Fig. 3 the evo-

ution of the normalized distributions of the two basic chaos
ndicators we consider in our study, the ftmLE Λ [Fig. 3(d)] and
the SALI [Fig. 3(e)]. From Fig. 3(d) we see that the distributions
of the Λ values have a high, sharp peak for log10 Λ ≳ −1,
which corresponds to the system’s chaotic orbits for which Λ

eventually saturates to a positive value [see the orange curve
in Fig. 1(b)]. In addition, we observe a second, smaller in this
case, peak corresponding to regular orbits, which propagates to
the left of Fig. 3(d), towards smaller log10 Λ values, in agreement
with Eq. (5) [also see the blue curve in Fig. 1(b)]. The region
between these two well formed peaks corresponds to weakly
chaotic orbits for which Λ reaches positive but small values. On
the other hand, the distribution of the SALI values [Fig. 3(e)]
develops very fast, two well separated formations: a set of high
positive values (log SALI ≳ −4), which corresponds to regular
10
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Fig. 3. Normalized distributions of the logarithms of the (a) D2
L (11), (b) R2

L (12), (c) S2L (13), (d) Λ (3), and (e) SALI (6), values of the orbits considered in Fig. 2 for
T = 50 (blue curves), T = 100 (orange curves), T = 250 (green curves), T = 1000 (red curves) and T = 2500 (purple curves) forward iterations of the 4D map (1).
w

K

o
t
n
b
f
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orbits [see Eq. (8) and the blue curve in Fig. 1(c)], and a high
peak at log10 SALI ≈ −16 corresponding to chaotic orbits whose
SALI became practically zero reaching the level of the computer
accuracy (i.e. 10−16) due to the exponentially fast decrease of
the index [see Eq. (8) and the orange curve in Fig. 1(c)]. It is
worth noting that even for as few iterations as T = 250 [green
curve in Fig. 1(c)] the distribution of the SALI values is practically
flat and non-existing between the two well defined regions of
small (chaotic orbits) and large (regular orbits) log10 SALI values.
This fast distinction between the two categories of orbits is a
main advantage of the SALI method, which also allows the es-
tablishment of a well defined threshold value for discriminating
between regular and chaotic orbits, which in our work is set to
log10 SALI = 10−8.

From the results of Fig. 3 we see that the increase of the
number of iterations does not lead to a drastic improvement of
the distinctive ability of the methods based on neighboring orbits’
LDs, as the shape of their distributions eventually does not change
significantly [Fig. 3(a)–(c)] in contrast to what happens with the
distributions of the ftmLE and the SALI shown in Fig. 3(d) and
(e). Thus, only slight adjustments are required for the threshold
values of the D2

L and R2
L indices for the numbers of iterations

reported in Fig. 3. In contrast, a change in the number of iterations
for S2L results in the increase of the related threshold value. So, it is
a good practice to check the value distributions of the three LDs-
based quantities D2

L , R
2
L and S2L , in order to determine the optimal

threshold values.

3.3. Effect of the overall chaos extent and grid spacing

Let us now study the effect of the system’s chaoticity on the
accuracy of the indices. Both the nonlinearity parameter K and
the coupling constant B of the 4D map (1) control the system’s
chaotic behavior, because, in general, their increase leads to more
extended chaos. We investigated the performance of the three
LDs-based diagnostics for various K and B values and we present
here some representative results obtained by varying K , while
B is kept fixed. More specifically, in Fig. 4(a)–(c), we show SALI
color plots for respectively K = 0.75, K = 1.1 and K = 1.5, and
B = 0.05, computed for a total of T = 2.5×104 forward iterations
6

on a grid of 1000 × 1000 evenly spaced ICs on the (x1, x2) plane
ith x3 = 0.54 and x4 = 0.01. From these figures we clearly

see that the increase of K results in a substantial increase in the
number of chaotic orbits, as the area of yellow-colored regions
corresponding to very low SALI values (which indicate chaos)
increases. In fact, we find the percentage PC of chaotic orbits to
be PC ≈ 43.9%, PC ≈ 69.8% and PC ≈ 79.6% respectively for

= 0.75, K = 1.1 and K = 1.5, when the log10 SALI = −8
threshold is used to discriminate between regular and chaotic
orbits.

We next investigate, for the three cases of Fig. 4, the effect
of the total number of map iterations T on the ability of the
LDs-based indices to correctly capture the nature of orbits, which
is quantified by their percentage agreement PA with the charac-
terization obtained by SALI for the same T . We note that here
we consider the order n = 2 indices D2

L , R
2
L and S2L , which are

based on LDs’ computations of neighboring orbits on the 2D plane
(x1, x2) defined by x3 = 0.54 and x4 = 0.01 [Fig. 4(a)–(c)]. The
PA is computed for ten different final iteration numbers and the
btained results are presented in Fig. 4(d)–(f). For each of the
hree considered K values and the ten different final iteration
umbers T an appropriate threshold value for discriminating
etween regular and chaotic orbits is selected for every index
ollowing the approach described in Section 3.2, while for the SALI
he threshold value log10 SALI = −8 is always used.

For K = 0.75 [Fig. 4(a) and (d)] the phase space displays the
smallest area of chaotic behavior among the three cases we con-
sidered, and PA decreases as the number of iterations increases.
This is due to the large number of sticky orbits at the edges of the
many regular islands, whose weakly chaotic nature is revealed
by the SALI only after a rather high number of iterations. Thus,
initially, for small T values the SALI, as well as the D2

L , R
2
L and

S2L indices, wrongly characterize the sticky orbits as regular, but
since all these methods agree on this assessment the related PA
values in Fig. 4(d) are large. For larger T values the SALI eventually
manages to identify the sticky obits as chaotic, but the LDs-based
indicators fail to do so, and consequently the PA values decrease.
This discrepancy is due to the known difficulty of the D2

L , R
2
L and

S2L indicators to correctly characterize sticky orbits, which has
been already seen in Fig. 2(g)–(i). This limitation was also pointed
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Fig. 4. Results obtained for orbits having their ICs on a 1000 × 1000 grid on the 2D subspace (x1, x2) with x3 = 0.54, x4 = 0.01, of the 4D map (1) with B = 0.05
and [(a), (d), (g)] K = 0.75, [(b), (e), (h)] K = 1.1, [(c), (f), (i)] K = 1.5. In (a)–(c) the ICs are colored according to the orbits’ log10 SALI value after T = 2.5 × 104

forward iterations using the color scales on the top of each panel. (d)–(f) The percentage accuracy PA of the orbits correctly characterized by the D2
L (blue points), R2

L
(orange points) and S2L (green points) with respect to the identification obtained by the SALI method for the same number of iterations T , for the orbits respectively
considered in (a)–(c). (g)–(i) The PA of orbits correctly characterized by the D2

L , R
2
L and S2L (blue, orange and green points respectively) after T = 103 iterations for

five different grid spacings σ on the (x1, x2) space of (a)–(c) respectively. In all panels the D2
L , R

2
L and S2L indices are evaluated through computations of neighboring

orbits’ LDs on the 2D (x1, x2) plane. In (d)–(i) the dashed line connections are used to guide the eye.
out in [33]. For K = 1.1 [Fig. 4(b) and (e)], the phase space’s
chaoticity increases and fewer sticky orbits are present compared
to the K = 0.75 case, and PA is observed to increase for large T
values, steadily exhibiting values ≳90%. Similarly, for the highly
chaotic case of K = 1.5 [Fig. 4(c) and (f)], for which the number
of sticky orbits has been drastically reduced, as the extent of the
chaotic sea has grown, PA enlarges with growing T .

Our analysis shows again that the D2
L , R

2
L and S2L indicators

are less efficient at properly characterizing orbits at the edges of
regular regions. This becomes especially problematic when the
system’s phase space is occupied by many stability islands and
chaos is confined in very thin strips between these islands, as
is for example seen in the case of Fig. 4(a). Furthermore, the
results of Fig. 4(e) and (f) show that the D2

L , R
2
L and S2L indices

have similar chaos diagnostic capabilities as in almost all studied
cases they achieve similar PA values for large enough T numbers.
In addition, taking also into account that we want to use these
indicators as fast diagnostics, we observe that (as was also seen
in Section 3.2) T = 1000 is a very good number for all indices to
produces reliable estimations of chaos extent, especially for the
K = 1.1 and K = 1.5 cases [Fig. 4(e) and (f) respectively] for
which PA ≳ 90%.

Having considered the effect of T on the chaos diagnostic
accuracy of D2

L , R
2
L and S2L , let us now discuss the effect of the

grid spacing size σ on their performance. For this purpose we
respectively present in Fig. 4(g)–(i) for K = 0.75, K = 1.1 and
K = 1.5 the PA values obtained by the three indicators at T = 103

for five different grid spacings on the (x1, x2) plane considered
in Fig. 4(a)–(c) in the range 10−4

≤ σ ≤ 10−2. For each K an
7

increase in accuracy PA is seen as σ decreases, indicating that
computations based on finer grid capture more accurately the
system’s dynamics. On the other hand, the use of more grid point
results in a significant increase of the required computational
time, something which is not desirable for the implementation of
the D2

L , R
2
L and S2L indices as fast chaos diagnostics. Nevertheless,

the fact that the accuracy PA for σ = 10−4 is only slightly better
than the one obtained for σ = 10−3, suggests that after some
point the further decrease of the grid spacing has only a moderate
impact on the achieved accuracy. Thus, a rather good choice for
the grid spacing in our study, balancing between the obtaining
accuracy and the required computational effort, is σ = 10−3.

The results of Fig. 4 clearly show that the extent of chaos, as
well as its structure in the phase space, significantly influences
the usefulness of the D2

L , R
2
L and S2L indicators in characterizing

the overall dynamics. In particular, we should be cautious when
these indices are applied to systems for which we expect a small
amount of chaos. Although this is a limitation of the D2

L , R2
L

and S2L indicators, it is worth noting that they still prove to be
highly accurate in their characterization of orbits for systems with
moderate or large PC values.

3.4. Global dynamics and the role of the order of the LDs-based
diagnostics

So far we computed the D2
L , R

2
L and S2L indices on 2D subspaces

of the 4D phase space of map (1). Now we will examine what
effect a change in the order n of the three LDs-based indicators

has on their performance by considering not only their n = 2
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Fig. 5. Normalized distributions of the (a) log10 Dn
L (11), (b) log10 Rn

L (12), and (c) log10 SnL , (13) values of the orbits considered in Fig. 2 for orders n = 1 (blue curves),
n = 2 (orange curves), n = 3 (green curves) and n = 4 (red curves). The Dn

L , R
n
L and SnL indices are evaluated along the x1 direction for n = 1, the x1 and x2 directions

for n = 2, the x1 , x2 and x3 directions for n = 3 and all coordinate directions for n = 4.
versions. As the order n is increased we are adding and processing
more information from the surroundings of a studied orbit, as we
include in the evaluation of the Dn

L , R
n
L and SnL indices the LD values

of more neighboring orbits. Thus, we expect that the obtained
results will capture more accurately the nature of the underlying
dynamics. Unfortunately, the increase of order n comes with the
drawback of the raised computational effort required to evaluate
the LDs of the additional grid points used for evaluating the Dn

L ,
Rn
L and SnL indices.
The effect of order n on the distributions of the Dn

L , R
n
L and SnL

values is shown in Fig. 5 where these distributions are plotted
for orders n = 1 (blue curves), n = 2 (orange curves), n = 3
(green curves) and n = 4 (red curves). These distributions are
obtained for the orbits considered in Fig. 2, whose ICs lie on the
2D subspace (x1, x2), x3 = 0.54, x4 = 0.01 of the 4D map (1)
with K = 1.5 and B = 0.05. In particular, for n = 1 neighboring
orbits on the x1 direction are considered for the computation of
D1
L , R

1
L and S1L , while for n = 2 the nearby orbits are located

on the (x1, x2) plane. For the evaluation of the D3
L , R

3
L and S3L

indicators additional neighboring orbits with variations in their
x3 coordinates are considered, while orbits with variations also
in the x4 direction are used for the calculation of the order n =

4 indices. We note that in all cases the grid spacing between
neighboring orbits is σ = 10−3.

From the results of Fig. 5 we see that for the Dn
L [Fig. 5(a)]

and SnL distributions [Fig. 5(c)] the two observed peaks increase
in height as n grows, although their positions do not change
drastically, while at the same time the trough between them is
decreasing. Thus, defining a threshold value for discriminating
between regular and chaotic orbits becomes easier for larger n.
It is also worth noting that the position of the threshold value at
the minimum of the trough does not vary significantly with the
indices’ order, especially for n ≥ 2. Interestingly, an increase in
the order n does not seem to have any effect on the shape of the
distributions of the Rn

L as shown in Fig. 5(b).
In order to gain a more general understanding on how the

percentage accuracy PA of the three indicators changes with order
n, and also to investigate the potential effect of the studied
ensembles of orbits on the performance of the indices, the orbit
classification obtained by each indicator for n = 1, 2, 3 and 4
is compared to the SALI characterization for the same number
of forward iterations, T = 103, for six different sets of orbits.
The examined ensembles of ICs are defined on the 2D subspaces
(x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4) and (x3, x4) of the 4D map
(1) with K = 1.5 and B = 0.05, by considering a 1000 × 1000
evenly spaced grid of ICs (so that the grid spacing is σ = 10−3),
while the remaining two variables are kept fixed at x1 = 0.6, x2 =

0.2, x3 = 0.54, and x4 = 0.01, depending on the 2D subspace
under consideration. The accuracy of each of the indicators Dn,
L

8

Rn
L and SnL , is then calculated for 1 ≤ n ≤ 4 for each set of

ICs in the following way. For n = 1 the indices are computed
along the xi direction corresponding to the smaller i index on
the 2D subspace, for n = 2 along both directions of the 2D
subspace, while for n = 3 the xi direction with the smaller i
index among the ones not included in the 2D subspace is also
considered. Obviously, for n = 4 all directions are included in the
computations. For example, in the case of the (x2, x3) subspace
the used ICs are on a 1000 × 1000 grid on the whole (x2, x3)
plane, i.e. 0 ≤ x2 < 1, 0 ≤ x3 < 1, with x1 = 0.6 and x4 = 0.01.
Then for n = 1 the three indicators are computed by considering
orbits along the x2 direction, for n = 2 along both the x2 and x3
directions, and for n = 3 along the x1, x2 and x3 directions. The
performed studies in the several subspaces, which cover a wide
range of coordinate orientations, and for all the possible orders
of the Dn

L , R
n
L and SnL indicators, ensure a global investigation of

the indices’ performance. The percentage PC of chaotic orbits for
the six considered ensembles, according to the SALI classification
for T = 103, are PC ≈ 72.4% for the (x1, x2) case, PC ≈ 91.8% for
(x1, x3), PC ≈ 89.6% for (x1, x4), PC ≈ 82% for (x2, x3), PC ≈ 77.7%
for (x2, x4) and PC ≈ 84% for the (x3, x4) case.

In Fig. 6 we present the percentage accuracy PA results ob-
tained by the Dn

L , R
n
L and SnL indices of order 1 ≤ n ≤ 4 for the six

sets of considered ICs. From this figure we see that the efficiency
of the Rn

L index [Fig. 6(b)] in correctly capturing the regular or
chaotic nature of the studied orbits does not practically depend
on the order n, as for all considered cases its PA does not change
with n. On the other hand, for the Dn

L [Fig. 6(a)] and the SnL indices
[Fig. 6(c)] we see a noticeable rise of PA when n is increased from
n = 1 to n = 2 (which is more significant in the case of SnL ),
followed by a mild improvement as n grows further. The main
outcome of this analysis is that n = 2 seems to be the optimal
order for the three indicators, as setting n > 2 does not result to
significant improvements of the PA values, which would justify
the associated increase in the required computational time. We
note that, due to the additional computations of LDs, the evalu-
ation of indices of order n = 3 (n = 4) approximately requires
three (six) times more computational effort with respect to the
n = 2 cases.

In Fig. 7 we see the percentage accuracy PA obtained by the
D2
L , R

2
L and S2L indices with respect to the percentage PC of chaotic

orbits (obtained by the SALI method) in the six considered sets
of ICs. As expected, a general increase in accuracy for the three
indicators is seen as the percentage of chaos grows, with the D2

L
and S2L indices being more accurate than R2

L . This behavior demon-
strates again the fact that the three LDs-based indices become
more accurate for more chaotic sets of orbits, in accordance to
the results discussed in Section 3.3 [Fig. 4].
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Fig. 6. The percentage accuracy PA obtained by the (a) Dn
L (11), (b) Rn

L (12), and (c) SnL (13) indices with respect to their order n, for six different sets of ICs of the
4D map (1) with K = 1.5 and B = 0.05. The considered ensembles of orbits are defined on the 2D subspaces (x1, x2) (blue points), (x1, x3) (orange points), (x1, x4)
(green points), (x2, x3) (red points), (x2, x4) (purple points) and (x3, x4) (brown points) by considering a 1000 × 1000 grid of ICs, while the remaining two variables
are set to x1 = 0.6, x2 = 0.2, x3 = 0.54, and x4 = 0.01 depending on the 2D subspace under consideration. The results are computed for T = 103 forward iterations,
and the dashed line connections are used to guide the eye.
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Fig. 7. The percentage accuracy PA of the (a) D2
L (11), (b) R2

L (12), and (c) S2L
13) indices for the six different sets of ICs considered in Fig. 6, with respect to
he percentage PC of chaotic orbits evaluated obtained by the SALI method. In
ll cases the related LDs and SALI values were calculated for a total of T = 103

orward iterations.

As an additional example of the applicability of the three LDs-
ased diagnostics for investigating the global dynamics of map
1), we consider their implementation on a 4D subspace of the
ystem’s phase space for K = 1.5 and B = 0.05. In particular we
onsider the subspace defined by 0.5 ≤ x1 < 0.6, 0 ≤ x2 < 0.1,

≤ x3 < 1 and 0 ≤ x4 < 1, which corresponds to 1% of
he total phase space. From the so far performed analyses we
now that n = 2 is the optimal order for achieving an accurate
haracterization of chaotic orbits and that LDs computations for
= 103 forward iterations are sufficient for that purpose. Thus,
e evaluate the D2

L , R
2
L and S2L indices along two directions of the

D subspace, and in particular, along the x1 and x2 coordinates,
y taking a grid of 100 × 100 points on the (x1, x2) space, which
orresponds to a σ = 10−3 grid spacing in accordance to the
outcomes of Section 3.3. Furthermore, in order to get a good
representation of the whole considered 4D subspace, without un-
necessarily increasing the number of studied ICs, we also regard
a grid of 100 × 100 points along x3 and x4. This arrangement
results in a total of 108 ICs, with PC ≈ 73% of them being
chaotic according to their SALI values at T = 103. The resultant
distributions of the D2

L , R
2
L and S2L indices for this 4D subspace are

shown in Fig. 8(a)–(c) respectively, and have the same general
shape as those seen in Figs. 2(d)–(f), 3(a)–(c) and 5, with two
well-formed peaks corresponding to regular and chaotic orbits.
The similarity of the obtained distributions for all considered
cases in this work clearly indicates the generality of their shape,
9

i.e. two peaks with a trough in between, which defines the place
of the indices’ threshold value for identifying chaotic orbits. It is
worth noting that the exact location of this threshold does not
significantly alter the overall orbit characterization. In order to
make this point more clear, for each distribution of Fig. 8 we
consider intervals for the location of the corresponding thresholds
in the trough between the two peaks. These intervals are −2.65 ≤

log10 D2
L ≤ −2, −3.2 ≤ log10 R2

L ≤ −2.8 and 4.3 ≤ log10 S2L ≤ 5.2
and are denoted by the highlighted orange regions in each panel
of Fig. 8. Considering ten different evenly distributed threshold
values in these intervals we found that the accuracy PA of the
haracterization made by the D2

L , R
2
L and S2L indices, in comparison

o one achieved by the SALI, was in the ranges 93.0% ≲ PA ≲
4.9% for the D2

L index, 91.8% ≲ PA ≲ 92.6% for the R2
L indicator,

nd 92.5% ≲ PA ≲ 94.7% for the S2L method. These results clearly
llustrate that we can implement the D2

L , R
2
L and S2L diagnostics

o distinguish between regular and chaotic orbits on a global
cale in the phase space of the 4D map (1), and that the selected
hreshold value does not have a strong impact on the accuracy of
his characterization.

. Summary and conclusion

In this work, we investigated the ability of some simple quan-
ities based on LDs computations to correctly identify orbits as
egular or chaotic. In particular, we focused our attention on a
onservative dynamical system whose phase space dimensional-
ty makes the direct visualization of the dynamics a challenging
ask: the 4D area preserving map (1), which is composed of
wo coupled 2D standard maps. More specifically, the quantities
e considered were the difference Dn

L (11), and the ratio Rn
L

12) of neighboring orbits’ LDs, as well as the SnL index (13),
which is related to the second spatial derivative of the LDs. The
SnL index was initially presented in [32] (in a slightly different
formulation to the one used in our study), while the Dn

L and Rn
L

diagnostics were introduced in [33], where they were also applied
to low-dimensional conservative dynamical systems, namely the
two degree of freedom Hénon–Heiles Hamiltonian and the 2D
standard map. Here, trying to investigate the applicability of these
indices to high-dimensional systems, we considered a symplectic
map having a 4D phase space. We emphasize that all three
indicators rely solely on computations of forward in time LDs
(although backward LD computations produce similar results) of
initially neighboring orbits, lying on n-dimensional spaces, with
n referred to as the order on each index.

Although color plots of the Dn
L , Rn

L and SnL indices manage
to correctly capture a qualitative picture of the system’s dy-
namics [Fig. 2(a)–(c)], as also LDs themselves do, we showed
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Fig. 8. Normalized distributions of the (a) log10 D2
L (11), (b) log10 R2

L (12), and (c) log10 S2L (13) values of orbits with ICs in the intervals x1 ∈ [0.5, 0.6), x2 ∈ [0, 0.1),
x3 ∈ [0, 1) and x4 ∈ [0, 1), for the 4D map (1) with K = 1.5 and B = 0.05, after T = 103 forward iterations. In total 108 ICs were considered on a grid having 100
points in each coordinate range. The D2

L , R
2
L and S2L indices are evaluated on a 100 × 100 grid along the x1 and x2 directions (which corresponds to a σ = 10−3 grid

spacing). Taking different threshold values in the highlighted orange regions [(a) −2.65 ≤ log10 D2
L ≤ −2, (b) −3.2 ≤ log10 R2

L ≤ −2.8 and (c) 4.3 ≤ log10 S2L ≤ 5.2]
alters the indices’ percentage accuracy PA by about 2%.
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that they can also, quite successfully, identify individual orbits
as regular or chaotic, and consequently quantify the system’s
extent of chaos. Actually, in all studied setups the three LDs-
based indices managed to correctly reveal the regular or chaotic
nature of orbits with an agreement PA ≳ 90% with respect to
the classification obtained by the SALI method. The importance
of this achievement becomes higher if we take into account the
fact that the evaluation of the these indices depends only on
the time evolution of orbits and does not require the knowledge
of the related variational equations (in the case of continuous
time systems) or the corresponding tangent map (for discrete
time maps) governing the evolution of small perturbations to the
studied orbits.

In order to use the three LDs-based quantities as chaos
diagnostics we defined appropriate threshold values from the
distributions of the Dn

L , R
n
L and SnL indices [Fig. 2(d)–(f)]. These

thresholds were used to characterize an orbit as regular (chaotic)
if its index value was below (above) the threshold. The determi-
nation of these thresholds was facilitated by the general shape
of the distributions, which have two well defined peaks, corre-
sponding to chaotic (peak at higher index values) and regular
orbits (peak at lower values), separated by a trough [Figs. 2(d)–(f),
5, and 8], where the threshold was set. Typically this thresh-
old was defined at the distribution’s minimum in the trough
[Fig. 2(d)–(f)], but the obtained orbit classifications were not too
sensitive on the exact location of the threshold, as a variation of
its value in the trough between the two peaks changed PA by ≲ 2%
[Fig. 8].

Even though the general form of the Dn
L , R

n
L and SnL distributions

emained the same, their explicit shape and consequently the
ocation of the threshold value for each index, depended on
he number of iterations T of the map for which the indices
were computed [Fig. 3(a)–(c)], as well as the order n [Fig. 5]. In
eneral, the increase of T and n resulted in more pronounced

peaks [with the exception of Rn
L whose distribution does not

seem to be affected by n; Fig. 5(b)], while at the same time
the trough’s height decreased making the determination of the
threshold value easier, and the efficiency of the indices higher.
Indeed an increase of PA was observed for various ensembles
of studied orbits when T [Fig. 4(e) and (f)] and n [Fig. 6] grew.
On the other hand, the increase of T and/or n led to longer
computations, as orbits were followed for more iterations when
T grew, and the number of neighboring orbits, whose LDs was
needed for the indices’ evaluation, increased for larger orders n.
t is also worth noting that all distributions practically covered
he same value intervals, with the exception of the SnL which

as shifted to higher index values when T increased [Fig. 3(c)].

10
Trying to find a balance between the achieved accuracy PA in
dentifying chaos and the overall required computational time, in
rder to use the Dn

L , R
n
L and SnL indices as efficient, short time chaos

iagnostics, we showed that good choice for the T and n variables
re T = 1000 and n = 2. Another factor which influenced the
ccuracy and the efficiency of the three indicators was the initial
hase space distance (grid spacing σ ) between the neighboring
rbits for which LDs were computed. We showed that a finer
rid (smaller distances) led to more accurate results and higher
A values [Fig. 4(g)–(i)], having at the same time the obvious
rawback of the increase of required computational effort as
ore orbits were evolved. Our analysis indicated that a good
alance between these two factors was obtained for σ = 10−3.
We also explored the effect on the performance of the three

ndicators of the system’s extent of chaos, i.e. the fraction PC
of chaotic orbits, as this was defined by the SALI method. Our
results showed that the indicators perform better for systems
with higher PC values. More specifically, we found that the three
diagnostics mainly failed to correctly identify the nature of orbits
located at the edges of stability islands, where sticky chaotic
orbits exist [Fig. 2(g)–(i)]. Consequently, the efficiency of these in-
dices was decreased when the system’s phase space was occupied
by many stability islands of various sizes, having narrow chaotic
strips between them where many sticky orbits resided [Fig. 4(a),
(d) and (g)]. Nevertheless, even in such cases, an appropriate
selection of the computation variables (in our case n = 2, T =

1000 and σ = 10−3) led to good results with PA ≳ 90%. The main
outcome of that investigation is that a fair amount of care should
be taken for application of these LDs-based indices to systems
where low levels of chaos are expected.

In summary, we found that, with respect to the variations
of the distributions of the different indices (which affect the
determination of the threshold value for discriminating between
regular and chaotic orbits), the SnL distributions were significantly
affected (moved to higher values) as T grew, although they more
or less retained their shape [Fig. 3(c)]. On the other extreme end,
the Rn

L distributions were not influenced by order n [Fig. 5(b)].
n all other cases we observed slight distribution variations with
espect to T [Fig. 3(a) and (b)] and n [Fig. 5(a) and (c)], which
ed to small (if any) changes in the considered threshold val-
es, that nevertheless did not drastically affect the overall orbit
lassification [Fig. 8].
From the results presented in this study, it is apparent that,

n general, the Dn
L and SnL indicators performed better than Rn

L
as they achieved larger PA values [Figs. 4(d)–(i) and 7]. Thus, if
only one index is to be used for the global investigation of the
chaotic behavior of a model, we recommend this indicator to be
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L or SnL , with, in general, the latter being a preferable choice as it
erformed slightly better with respect to the obtained PA values
Figs. 4(d)–(i) and 7], although its threshold value significantly
aries with T [Fig. 3]. Nevertheless, once the LDs have been
omputed for a tested ensemble of orbits, evaluating any of the
hree indicators is a straightforward task. It is worth noting that
lthough the results obtained by the Dn

L and SnL indicators are not
s precise as those achieved by standard chaos detection tech-
iques like the SALI, the computations needed for their evaluation
o not require the knowledge of the variational equations or the
onstruction of the related tangent map, which simplifies the
rocess of revealing the chaoticity of orbits.
We emphasize that the generality of our outcomes is sup-

orted by the fact that the presented results were obtained for
everal sets of ICs located in various subspaces of the map’s phase
pace, having different dimensions, and for different parameter
alues. Our findings show that tools based on LDs computations
an be effectively used as chaos diagnostic techniques also for
onservative dynamical systems of higher dimensions, extending
nd completing in this way the results presented in [33].

eclaration of competing interest

All authors of the manuscript do not have any conflict of
nterest.

ata availability

Data will be made available on request.

cknowledgments

A. N. acknowledges support from the University of Cape Town
University Research Council, URC), South Africa postdoctoral Fel-
owship grant and from the Oppenheimer Memorial Trust (OMT),
outh Africa. M. H. acknowledges support by the National Re-
earch Foundation (NRF) of South Africa (grant number 129630).
. K. and S. W. acknowledge the financial support provided by

he EPSRC, United Kingdom Grant No. EP/P021123/1. We thank
he High Performance Computing facility of the University of
ape Town and the Centre for High Performance Computing [44]
f South Africa for providing computational resources for this
roject.

eferences

[1] A.M. Lyapunov, The general problem of the stability of motion, Internat. J.
Control 55 (3) (1992) 531–534.

[2] V.I. Oseledec, A multiplicative ergodic theorem. Liapunov characteristic
number for dynamical systems, Trans. Moscow Math. Soc. 19 (1968)
197–231.

[3] G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic
exponents for smooth dynamical systems and for Hamiltonian systems; a
method for computing all of them. Part 1: Theory, Meccanica 15 (1) (1980)
9–20.

[4] G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic
exponents for smooth dynamical systems and for Hamiltonian systems;
a method for computing all of them. Part 2: Numerical application,
Meccanica 15 (1) (1980) 21–30.

[5] C. Skokos, The Lyapunov characteristic exponents and their computation,
Lecture Notes in Phys. 790 (2010) 63–135.

[6] C. Froeschlé, E. Lega, R. Gonczi, Fast Lyapunov indicators. Application to
asteroidal motion, Celestial Mech. Dynam. Astronom. 67 (1) (1997) 41–62.

[7] R. Barrio, Sensitivity tools vs. Poincare sections, Chaos Solitons Fractals 25
(3) (2005) 711–726.

[8] P.M. Cincotta, C. Simó, Simple tools to study global dynamics in non-
axisymmetric galactic potentials - I, Astron. Astrophys. Suppl. Ser. 147 (2)
(2000) 205–228.
11
[9] C. Skokos, Alignment indices: A new, simple method for determining the
ordered or chaotic nature of orbits, J. Phys. A: Math. Gen. 34 (47) (2001)
10029–10043.

[10] C. Skokos, T. Bountis, C. Antonopoulos, Geometrical properties of local
dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI)
method, Physica D 231 (1) (2007) 30–54.

[11] Y.G. Petalas, C.G. Antonopoulos, T. Bountis, M.N. Vrahatis, Evolutionary
methods for the approximation of the stability domain and frequency
optimization of conservative maps, Int. J. Bifurcation Chaos 18 (2008)
2249–2264.

[12] J. Boreux, T. Carletti, C. Skokos, M. Vittot, Hamiltonian control used
to improve the beam stability in particle accelerator models, Commun.
Nonlinear Sci. Numer. Simul. 17 (4) (2012) 1725–1738.

[13] L.M. Saha, N. Sahni, Chaotic evaluations in a modified coupled Logistic type
predator-prey model, Appl. Math. Sci. 6 (2012) 6927–6942.

[14] N. Kyriakopoulos, V. Koukouloyannis, C. Skokos, P.G. Kevrekidis, Chaotic be-
havior of three interacting vortices in a confined Bose-Einstein condensate,
Chaos 24 (2) (2014) 024410.

[15] T. Manos, T. Bountis, C. Skokos, Interplay between chaotic and regular
motion in a time-dependent barred galaxy model, J. Phys. A 46 (25) (2013)
254017.

[16] D.D. Carpintero, J.C. Muzzio, H.D. Navone, Models of cuspy triaxial stellar
systems – III. The effect of velocity anisotropy on chaoticity, Mon. Not. R.
Astron. Soc. 438 (4) (2014) 2871–2881.

[17] P. Stránský, P. Hruška, P. Cejnar, Quantum chaos in the nuclear collective
model: Classical-quantum correspondence, Phys. Rev. E 79 (2009) 046202.

[18] C. Skokos, T. Manos, The smaller (SALI) and the generalized (GALI) align-
ment indices: Efficient methods of chaos detection, in: Chaos Detection
and Predictability, in: Lecture Notes in Physics, vol. 915, Springer, 2016,
pp. 129–181.

[19] J.J. Madrid, A.M. Mancho, Distinguished trajectories in time dependent
vector fields, Chaos 19 (1) (2009) 013111.

[20] A.M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza, Lagrangian descriptors:
A method for revealing phase space structures of general time dependent
dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 18 (12) (2013)
3530–3557.

[21] M. Agaoglou, B. Aguilar-Sanjuan, V.J. García-Garrido, F. González-Montoya,
M. Katsanikas, V. Krajňák, S. Naik, S. Wiggins, Lagrangian Descriptors:
Discovery and Quantification of Phase Space Structure and Transport,
zenodo, 2020, http://dx.doi.org/10.5281/zenodo.3958985.

[22] C. Lopesino, F. Balibrea, S. Wiggins, A.M. Mancho, Lagrangian descriptors
for two dimensional, area preserving, autonomous and nonautonomous
maps, Commun. Nonlinear Sci. Numer. Simul. 27 (1–3) (2015) 40–51.

[23] C. Lopesino, F. Balibrea-Iniesta, V.J. García-Garrido, S. Wiggins, A.M. Man-
cho, A theoretical framework for Lagrangian descriptors, Int. J. Bifurcation
Chaos 27 (01) (2017) 1730001.

[24] G.T. Craven, R. Hernandez, Lagrangian descriptors of thermalized transition
states on time-varying energy surfaces, Phys. Rev. Lett. 115 (2015) 148301.

[25] G.T. Craven, A. Junginger, R. Hernandez, Lagrangian descriptors of driven
chemical reaction manifolds, Phys. Rev. E 96 (2) (2017) 022222.

[26] F. Revuelta, R. Benito, F. Borondo, Unveiling the chaotic structure in phase
space of molecular systems using Lagrangian descriptors, Phys. Rev. E 99
(3) (2019) 032221.

[27] M. Katsanikas, M. Hillebrand, C. Skokos, S. Wiggins, A new type of
dynamical matching in an asymmetric Caldera potential energy surface,
Chem. Phys. Lett. 811 (2023) 140208.

[28] A. Darwish, S. Norouzi, G. Di Labbio, L. Kadem, Extracting Lagrangian
coherent structures in cardiovascular flows using Lagrangian descriptors,
Phys. Fluids 33 (11) (2021) 111707.

[29] F. Balibrea-Iniesta, C. Lopesino, S. Wiggins, A.M. Mancho, Lagrangian
descriptors for stochastic differential equations: A tool for revealing the
phase portrait of stochastic dynamical systems, Int. J. Bifurcation Chaos 26
(13) (2016) 1630036.

[30] J. Curbelo, C.R. Mechoso, A.M. Mancho, S. Wiggins, Lagrangian study of the
final warming in the southern stratosphere during 2002: Part I. The vortex
splitting at upper levels, Clim. Dyn. 53 (2019) 2779–2792.

[31] J. Montes, F. Revuelta, F. Borondo, Lagrangian descriptors and regular
motion, Commun. Nonlinear Sci. Numer. Simul. 102 (2021) 105860.

[32] J. Daquin, R. Pédenon-Orlanducci, M. Agaoglou, G. García-Sánchez, A.M.
Mancho, Global dynamics visualisation from Lagrangian Descriptors. Ap-
plications to discrete and continuous systems, Physica D 442 (2022)
133520.

[33] M. Hillebrand, S. Zimper, A. Ngapasare, M. Katsanikas, S. Wiggins, C.
Skokos, Quantifying chaos using Lagrangian descriptors, Chaos 32 (12)
(2022) 123122.

[34] M. Hénon, C. Heiles, The applicability of the third integral of motion: Some
numerical experiments, Astron. J. 69 (1964) 73.

http://refhub.elsevier.com/S0167-2789(23)00187-2/sb1
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb1
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb1
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb2
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb2
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb2
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb2
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb2
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb3
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb3
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb3
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb3
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb3
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb3
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb3
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb4
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb4
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb4
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb4
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb4
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb4
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb4
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb5
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb5
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb5
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb6
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb6
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb6
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb7
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb7
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb7
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb8
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb8
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb8
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb8
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb8
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb9
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb9
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb9
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb9
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb9
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb10
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb10
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb10
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb10
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb10
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb11
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb11
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb11
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb11
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb11
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb11
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb11
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb12
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb12
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb12
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb12
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb12
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb13
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb13
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb13
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb14
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb14
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb14
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb14
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb14
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb15
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb15
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb15
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb15
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb15
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb16
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb16
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb16
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb16
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb16
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb17
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb17
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb17
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb18
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb18
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb18
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb18
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb18
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb18
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb18
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb19
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb19
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb19
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb20
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb20
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb20
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb20
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb20
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb20
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb20
http://dx.doi.org/10.5281/zenodo.3958985
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb22
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb22
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb22
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb22
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb22
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb23
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb23
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb23
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb23
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb23
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb24
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb24
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb24
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb25
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb25
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb25
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb26
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb26
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb26
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb26
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb26
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb27
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb27
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb27
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb27
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb27
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb28
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb28
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb28
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb28
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb28
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb29
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb29
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb29
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb29
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb29
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb29
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb29
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb30
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb30
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb30
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb30
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb30
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb31
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb31
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb31
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb32
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb32
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb32
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb32
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb32
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb32
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb32
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb33
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb33
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb33
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb33
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb33
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb34
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb34
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb34


S. Zimper, A. Ngapasare, M. Hillebrand et al. Physica D 453 (2023) 133833
[35] B.V. Chirikov, A universal instability of many-dimensional oscillator
systems, Phys. Rep. 52 (5) (1979) 263–379.

[36] M. Katsanikas, P. Patsis, G. Contopoulos, Instabilities and stickiness in a 3D
rotating galactic potential, Int. J. Bifurcation Chaos 23 (2) (2013) 1330005.

[37] L. Zachilas, M. Katsanikas, P. Patsis, The structure of phase space close
to fixed points in a 4D symplectic map, Int. J. Bifurcation Chaos 23 (07)
(2013) 1330023.

[38] M. Richter, S. Lange, A. Bäcker, R. Ketzmerick, Visualization and comparison
of classical structures and quantum states of four-dimensional maps, Phys.
Rev. E 89 (2014) 022902.

[39] M. Agaoglou, V.J. García-Garrido, M. Katsanikas, S. Wiggins, Visualizing
the phase space of the HeI2 van der waals complex using Lagrangian
descriptors, Commun. Nonlinear Sci. Numer. Simul. 103 (2021) 105993.
12
[40] H. Kantz, P. Grassberger, Internal Arnold diffusion and chaos thresholds in
coupled symplectic maps, J. Phys. A: Math. Gen. 21 (3) (1988) L127.

[41] A.S. Demian, S. Wiggins, Detection of periodic orbits in Hamiltonian
systems using Lagrangian descriptors, Int. J. Bifurcation Chaos 27 (14)
(2017) 1750225.

[42] M. Katsanikas, V.J. García-Garrido, M. Agaoglou, S. Wiggins, Phase space
analysis of the dynamics on a potential energy surface with an entrance
channel and two potential wells, Phys. Rev. E 102 (1) (2020).

[43] J. Daquin, C. Charalambous, Detection of separatrices and chaotic seas
based on orbit amplitudes, Celestial Mech. Dynam. Astronom. 135 (3)
(2023).

[44] https://www.chpc.ac.za.

http://refhub.elsevier.com/S0167-2789(23)00187-2/sb35
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb35
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb35
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb36
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb36
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb36
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb37
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb37
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb37
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb37
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb37
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb38
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb38
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb38
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb38
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb38
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb39
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb39
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb39
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb39
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb39
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb40
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb40
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb40
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb41
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb41
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb41
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb41
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb41
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb42
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb42
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb42
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb42
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb42
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb43
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb43
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb43
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb43
http://refhub.elsevier.com/S0167-2789(23)00187-2/sb43
https://www.chpc.ac.za

	Performance of chaos diagnostics based on Lagrangian descriptors. Application to the 4D standard map
	Introduction
	Numerical techniques
	Numerical Results
	Dynamics on a 2D subspace
	Effect of the number of iterations
	Effect of the overall chaos extent and grid spacing
	Global dynamics and the role of the order of the LDs-based diagnostics

	Summary and Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


